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restriction of free rotation about the single bond between the imino 
nitrogen and the isopropyl methine carbon due to the access of 
the (S1S)-I molecule. From the foregoing discussion, the in­
volvement of the imino nitrogen of (R,R)-2 in the association 
appears quite likely, and this would confirm the associated 
structure depicted in Figure 1 as responsible for the enantiose-
lection noted in the present study. 

In summary, we have developed a representative of a new chiral 
selector that employs the complementarity of twists in dual hy­
drogen bond association. We are currently extending the scope 
of enantioselection by the present selector to reveal the generality 
of this approach to molecular recognition. 
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Oxidative cyclization reactions are of interest because they allow 
for the generation of carbon-carbon bonds and the formation of 
rings without a loss in the overall functionality of a molecule.12 

Organic electrochemistry would appear ideally suited for initiating 
such reactions because it can selectively oxidize electron-rich 
functional groups at preset potentials, under neutral conditions, 
and without the need for chemical reagents.3 Unfortunately, there 
exist only a few examples of anodic reactions that lead to direct 
carbon-carbon bond formation.4 In addition, only a handful of 
these reactions have been shown to be generally useful for initiating 
intramolecular cyclization reactions.5'6 We report herein our 
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initial efforts to develop the anodic coupling of electron-rich olefins 
for such a purpose.7,8 

These studies were initiated by examining the electrochemical 
behavior of compound 1. To this end, the anodic oxidation of 
1 under constant-current conditions in an undivided cell using 
a platinum anode and a 1 N lithium perchlorate in 50% meth-
anol-tetrahydrofuran electrolyte solution led to 68-73% isolated 
yields of cyclized products. To our surprise, the reaction afforded 
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a moderate degree of diastereoselectivity and gave rise to a 5.3:1 
mixture of isomers at the benzylic carbon (compounds 2 and 3). 
The cyclization also resulted in cis and trans isomers about the 
five-membered ring. The cis and trans isomers having the same 
stereochemistry at the benzylic carbon were identified by hydrolysis 
of the acetals and then epimerization of the products to a single 
aldehyde isomer. The stereochemistry at the benzylic carbon was 
determined by a single-crystal X-ray analysis of the 2,4-dinitro-
phenylhydrazone (2,4-DNP) derivative derived from the trans 
major aldehyde.9 
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Evidence concerning the origins of the observed diastereose-
lectivity was obtained by repeating the reaction using 50% 
MeOH-^4/THF as solvent. In this case, anodic oxidation of 1 
led to a 68% yield of cyclized products. Compounds 2 and 3 were 
again formed in a 5.3:1 ratio (the compounds had OCD3 acetals). 
NMR analysis showed that approximately 50% of the cyclized 
material still had an OCHi group at the benzylic position and 
therefore had to be derived from intramolecular transfer of the 
methoxy group originally at C, of the starting material. This 
material was predominately (greater that 10:1) the cis and trans 
major products, 2. The remainder of the material had an OCD3 
group at the benzylic position and was formed in a ca. 2:1 ratio 
of cyclized products 2 and 3. These products are assumed to arise 
from solvent trapping of an incipient benzylic carbocation. 

The methanol-*^ experiment suggests that the bulk of the 
diastereoselectivity was derived from an intramolecular transfer 
of the C, methoxy group and that at one point half of the material 
must pass through a bicyclic intermediate like 6 (Scheme I). The 
stereochemistry of the major products can be explained by sug­
gesting that the phenyl ring occupies the sterically least hindered 
position in this bicyclic intermediate. Although the possibility 
of a trans-fused bicyclic intermediate is troublesome, OCH3 ether 
products having both cis and trans stereochemistry about the 
five-membered ring are formed (1:1 ratio), and the lack of any 
deuterium incorporation at the bridgehead positions rules out the 
possibility of the trans product resulting from epimerization of 
a cis product. A mechanism wherein either 4 or 5 is trapped by 
solvent to form a mixed OCH3/OCD3 acetal prior to migration 
seems unlikely in view of the difference in diastereomer ratios 
obtained for the OCH3 and OCD3 benzyl ether products.10 

Having determined that the anodic oxidation of 1 could cleanly 
lead to intramolecular coupling products, we turned our attention 
to examining whether the enol ether, the styrene, or both groups 
were necessary for effective cyclization." In order to address 
this question, we synthesized cyclization substrates 7a and 7b. 
Preparative electrolysis of 7a in methanol led to the formation 
of a 77% isolated yield of cyclized products (Scheme II). These 
products were obtained in a ca. 3.5:1 ratio of compounds 8a and 
9a. No uncyclized material was obtained. On the other hand, 
anodic oxidation of 7b in methanol led to a complex mixture of 
products. From the 300-MHz 1H NMR spectrum of the crude 
reaction mixture it was clear that the majority of the material 
was not cyclized. From the mixture, four major compounds were 
obtained along with 6% of the recovered starting material. Two 
of the compounds were uncyclized and were isolated in 25% yield. 
A 20% yield of cyclized materials was obtained. It is clear from 
these results that anodic oxidation of the enol ether is much more 
effective at initiating the intramolecular coupling reactions than 
is oxidation of the styrene moiety. 

Finally, the reactions were studied in order to see if silyl enol 
ethers would be compatible with the electrochemical oxidation 
conditions. To this end, silyl enol ether substrates 7c and 7d were 
studied. Electrolysis of 7c led to the formation of a 67% isolated 
yield of dimethoxy acetal products 8a and 9a. These products 
were obtained in a 2.6:1 ratio, respectively. Anodic oxidation of 
7d led to the formation of a 67% isolated yield of cyclized products 
2, 3, and 8d, along with 9% of the recovered starting material. 
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g/cm3 for Z = 4 at 22 "C, M = 0.93 cm"1 (Mo Ka, X = 0.71073 A). A total 
of 7464 reflections were collected using SIEMENS R3m/V automated dif-
fractometer. The structure was solved by direct methods. Full-matrix 
least-squares refinement using 3610 observed [F > 6J(F)] reflections out of 
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(11) Interestingly, both groups have similar oxidation potentials. For 
example, cyclic voltammetry of both 4a and 4b gives rise to an initial oxidation 
wave at +1.4 V vs a Ag/AgCI reference electrode (Pt anode/1 N LiCLO4 
in CH3CN). 

The products were obtained in a combined 1.8:1 mixture of isomers 
at the benzylic position. In neither case was any uncyclized 
material isolated. The use of silyl enol ether initiators should 
greatly expand the synthetic utility of the reactions because of 
the ease of their synthesis. 

In summary, we have found that the intramolecular anodic 
coupling of enol ethers and olefinic nucleophiles can lead to high 
yields of cyclized products.12 These examples represent a new 
class of potentially useful anodic carbon-carbon bond forming 
reactions. Studies aimed at further elucidating the factors that 
govern product formation and diastereoselectivity as well as de­
termining the overall synthetic utility of these reactions are 
currently underway. The results of these studies will be reported 
in due course. 
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For some time it has been proposed that the effects of hindered 
axial ligand rotation and fixed axial ligand orientation may be 
significant for the regulation of midpoint potentials1 and for the 
explanation of unusual shifts of certain resonances in the proton 
NMR spectra of heme proteins.2"4 These suggestions have 
stimulated a number of investigations to determine the role of these 
effects in heme proteins and model heme compounds.5"10 
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